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How predictable are human eye movements during search in real world scenes? We

recorded 14 observers’ eye movements as they performed a search task (person

detection) in 912 outdoor scenes. Observers were highly consistent in the regions

fixated during search, even when the target was absent from the scene. These eye

movements were used to evaluate computational models of search guidance from

three sources: saliency, target features, and scene context. Each of these models

independently outperformed a cross-image control in predicting human fixations.

Models that combined sources of guidance ultimately predicted 94% of human

agreement, with the scene context component providing the most explanatory

power. None of the models, however, could reach the precision and fidelity of an

attentional map defined by human fixations. This work puts forth a benchmark for

computational models of search in real world scenes. Further improvements in
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modelling should capture mechanisms underlying the selectivity of observers’
fixations during search.

Key words: Computational model; Contextual guidance; Eye movement; Real

world scene; Saliency; Target feature; Visual search

Daily human activities involve a preponderance of visually guided actions,

requiring observers to determine the presence and location of particular

objects. How predictable are human search fixations? Can we model the

mechanisms that guide visual search? Here, we present a dataset of 45,144

fixations recorded while observers searched 912 real world scenes and

evaluate the extent to which search behaviour is (1) consistent across

individuals and (2) predicted by computational models of visual search

guidance.

Studies of free viewing have found that the regions selected for fixation

vary greatly across observers (Andrews & Coppola, 1999; Einhauser,

Rutishauser, & Koch, 2008; Parkhurst & Neibur, 2003; Tatler, Baddeley, &

Vincent, 2006). However, the effect of behavioural goals on eye movement

control has been known since the classic demonstrations by Buswell (1935)

and Yarbus (1967) showing that observers’ patterns of gaze depended

critically on the task. Likewise, a central result emerging from studies of

oculomotor behaviour during ecological tasks (driving, e.g., Land & Lee,

1994; food preparation, e.g., Hayhoe, Shrivastava, Mruczek, & Pelz, 2003;

sports, e.g., Land & McLeod, 2000) is the functional relation of gaze to one’s

momentary information processing needs (Hayhoe & Ballard, 2005).

In general, specifying a goal can serve as a referent for interpreting

internal computations that occur during task execution. Visual search*
locating a given target in the environment*is an example of a behavioural

goal which produces consistent patterns of eye movements across observers.

Figure 1 (later) shows typical fixation patterns of observers searching for

pedestrians in natural images. Different observers often fixate remarkably

consistent scene regions, suggesting that it is possible to identify reliable,

strategic mechanisms underlying visual search and to create computational

models that predict human eye fixations.

Various mechanisms have been proposed which may contribute to

attention guidance during visual search. Guidance by statistically unex-

pected, or salient, regions of a natural image has been explored in depth in

both modelling and behavioural work (e.g., Bruce & Tsotsos, 2006; Itti,

Koch, & Niebur, 1998; Koch & Ullman, 1985; Li, 2002; Rosenholtz, 1999;

Torralba, 2003a). Numerous studies have shown that regions where the local

statistics differ from the background statistics are more likely to attract an

observer’s gaze. Distinctive colour, motion, orientation, or size constitute the
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most common salient attributes, at least in simple displays (for a review,

Wolfe & Horowitz, 2004). Guidance by saliency may also contribute to early

fixations on complex images (Bruce & Tsotsos, 2006; Harel, Koch, &

Perona, 2006; Itti & Koch, 2000; Parkhurst, Law, & Niebur, 2002; van Zoest,

Donk, & Theeuwes, 2004), particularly when the scene context is not

informative (Parkhurst et al., 2002; Peters, Iyer, Itti, & Koch, 2005) or during

free viewing. In natural images, it is interesting to note that objects are

typically more salient than their background (Elazary & Itti, 2008; Torralba,

Oliva, Castelhano, & Henderson, 2006), so oculomotor guidance processes

may use saliency as a heuristic to fixate objects in the scene rather than the

background.

In addition to bottom-up guidance by saliency, there is a top-down

component to visual attention that is modulated by task. During search,

observers can selectively attend to the scene regions most likely to contain

the target. In classical search tasks, target features are an ubiquitous source

of guidance (Treisman & Gelade, 1980; Wolfe, 1994, 2007; Wolfe, Cave, &

Franzel, 1998; Zelinsky, 2008). For example, when observers search for a red

target, attention is rapidly deployed towards red objects in the scene.

Although a natural object, such as a pedestrian, has no single defining

feature, it still has statistically reliable properties (upright form, round head,

straight body) that could be selected by visual attention. In fact, there is

considerable evidence for target-driven attentional guidance in real world

search tasks (Einhauser et al., 2008; Pomplun, 2006; Rao, Zelinsky, Hayhoe,

& Ballard, 2002; Rodriguez-Sanchez, Simine, & Tsotsos, 2007; Tsotsos et al.,

1995; Zelinsky, 2008).

Another top-down component which applies in ecological search tasks is

scene context. Statistical regularities of natural scenes provide rich cues to

target location and appearance (Eckstein, Drescher & Shimozaki, 2006;

Hoiem, Efros, & Hebert, 2006; Oliva & Torralba, 2007; Torralba & Oliva,

2002, 2003). Within a glance, global information can provide useful

information about spatial layout and scene category (Greene & Oliva,

2009; Joubert, Rousselet, Fize, & Fabre-Thorpe, 2007; McCotter, Gosselin,

Sowden, & Schyns, 2005; Renninger & Malik, 2004; Rousselet, Joubert, &

Fabre-Thorpe, 2005; Schyns & Oliva, 1994). Categorical scene information

informs a viewer of which objects are likely to be in the scene and where (Bar,

2004; Biederman, Mezzanotte, & Rabinowitz, 1982; de Graef, Christiaens, &

d’Ydewalle, 1990; Friedman, 1979; Henderson, Weeks, & Hollingworth,

1999; Loftus & Mackworth, 1978). Furthermore, global features can be

extracted quickly enough to influence early search mechanisms and fixations

(Castelhano & Henderson, 2007; Chaumon, Drouet, & Tallon-Baudry, 2008;

Neider & Zelinky, 2006; Torralba et al., 2006; Zelinsky & Schmidt, this issue

2009).
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In the present work, we recorded eye movements as observers searched

for a target object (a person) in over 900 natural scenes and evaluated the

predictive value of several computational models of search. The purpose of

this modelling effort was to study search guidance, that is, where observers

look while deciding whether a scene contains a target. We modelled three

sources of guidance: bottom-up visual saliency, learned visual features of the

target’s appearance, and a learned relationship between target location and

scene context. The informativeness of these models, individually and

combined, was assessed by comparing the regions selected by each model

to human search fixations, particularly in target-absent scenes (which

provide the most straightforward and rigorous comparison).

The diversity and size of our dataset (14 observers’ fixations on 912 urban

scenes)1 provides a challenge for computational models of attentional

guidance in real world scenes. Intelligent search behaviour requires an

understanding of scenes, objects and the relationships between them.

Although humans perform this task intuitively and efficiently, modelling

visual search is challenging from a computational viewpoint. The combined

model presented here achieves 94% of human agreement on our database;

however, a comprehensive understanding of human search guidance will

benefit from mutual interest by cognitive and computer vision scientists alike.

EXPERIMENTAL METHOD

Participants

Fourteen observers (18�40 years old, with normal acuity) were paid for their

participation ($15/hour). They gave informed consent and passed the

eyetracking calibration test.

Apparatus

Eye movements were recorded at 240 Hz using an ISCAN RK-464 video-

based eyetracker. Observers sat at 75 cm from the display monitor, 65 cm

from the eyetracking camera, with their head centred and stabilized in a

headrest. The position of the right eye was tracked and viewing conditions

were binocular. Stimuli were presented on a 21-inch CRT monitor with a

resolution of 1024�768 pixels and a refresh rate of 100 Hz. Presentation of

the stimuli was controlled with Matlab and Psychophysics Toolbox

(Brainard, 1997; Pelli, 1997). The following calibration procedure was

1 The complete dataset and analysis tools will be made available at the authors’ website.
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performed at the beginning of the experiment and repeated following breaks.

Participants sequentially fixated five static targets positioned at 08 (centre)

and at 108 of eccentricity. Subsequently, the accuracy of the calibration was

tested at each of nine locations evenly distributed across the screen,

including the five calibrated locations plus four targets at �/�5.258
horizontally and vertically from centre. Estimated fixation position had to

be within 0.758 of visual angle for all nine points, otherwise the experiment

halted and the observer was recalibrated.

Stimuli

The scenes consisted of 912 colour pictures of urban environments, half

containing a pedestrian (target present) and half without (target absent).

Images were of resolution 800�600 pixels, subtending 23.5�17.7 8 of visual
angle. When present, pedestrians subtended on average 0.9�1.88 (corre-

sponding to roughly 31�64 pixels). For the target-present images, targets

were spatially distributed across the image periphery (target locations ranged

from 2.7 8 to 13 8 from the screen centre; median eccentricity was 8.68), and
were located in each quadrant of the screen with approximately equal

frequency.2

Procedure

Participants were instructed to decide as quickly as possible whether a

person was present in the scene. Responses were registered via the keyboard,

which terminated the image presentation. Reaction time and eye movements

were recorded. The first block consisted of the same 48 images for all

participants, and was used as a practice block to verify that the eye could be

tracked accurately. The experiment was composed of 19 blocks of 48 trials

each and 50% target prevalence within each block. Eyetracking calibration

was checked after each block to ensure tracking accuracy within 0.758 of

each calibration target. Each participant performed 912 experimental trials,

resulting in an experiment duration of 1 hour.

Eye movement analysis

Fixations were identified on smoothed eye position data, averaging the raw

data over a moving window of eight data points (33 ms). Beginning and end

2 See additional figures on authors’ website for distribution of targets and fixations across all

images in the database.
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positions of saccades were detected using an algorithm implementing an

acceleration criterion (Araujo, Kowler, & Pavel, 2001). Specifically, the

velocity was calculated for two overlapping 17 ms intervals; the onset of the

second interval was 4.17 ms after the first. The acceleration threshold was
a velocity change of 68/s between the two intervals. Saccade onset was

defined as the time when acceleration exceeded threshold and the saccade

terminated when acceleration dropped below threshold. Fixations were

defined as the periods between successive saccades. Saccades occurring

within 50 ms of each other were considered to be continuous.

HUMAN EYE MOVEMENTS RESULT

Accuracy and eye movement statistics

On average, participants’ correct responses when the target was present (hits)
was 87%. The false alarm rate (fa) in target-absent scenes was 3%. On

correct trials, observers’ mean reaction time was 1050 ms (1 standard error

of the mean or SEM�18) for target-present and 1517 ms (1 SEM�14) for

target-absent. Observers made an average of 3.5 fixations (excluding the

initial central fixation but including fixations on the target) in target-present

scenes and 5.1 fixations in target-absent scenes. The duration of ‘‘search

fixations’’ exclusively (i.e., exploratory fixations excluding initial central

fixation and those landing on the target) averaged 147 ms on target-present
trials and 225 ms on target-absent trials. Observers spent an average of 428

ms fixating the target-person in the image before indicating a response.

We focused our modelling efforts on predicting locations of the first three

fixations in each scene (but very similar results were obtained when we

included all fixations). We introduce next the measures used to compare

search model’s predictions and humans’ fixations.

Agreement among observers

How much eye movement variability exists when different observers look at

the same image and perform the same task? First, we computed the

regularity, or agreement among locations fixated by separate observers
(Mannan, Ruddock, & Wooding, 1995; Tatler, Baddeley, & Gilchrist, 2005).

As in Torralba et al. (2006), a measure of inter-observer agreement was

obtained for each image by using the fixations generated by all-except-one

observers. The ‘‘observer-defined’’ image region was created by assigning a

value of 1 to each fixated pixel and 0 to all other pixels, then applying a

Gaussian blur (cutoff frequency�8 cycles per image, about 18 visual angle).
The observer-defined region was then used to predict fixations of the
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excluded observer. For each image, this process was iterated for all observers.

Thus, this measure reflected how consistently different observers selected

similar regions to fixate. Figure 1 shows examples of target-absent scenes

with high and low values of inter-observer agreement.

Not all of the agreement between observers is driven by the image,

however*human fixations exhibit regularities that distinguish them from

randomly selected image locations. Tatler and Vincent (this issue 2009)

present compelling evidence that robust oculomotor biases constrain

fixation selection independently of visual information or task (see also

Tatler, 2007). Qualitatively, we observe in our dataset that the corners of the

image and the top and bottom edges were less frequently fixated than

regions near the image centre. We therefore derived a measure to quantify

the proportion of inter-observer agreement that was independent of the

particular scene’s content (see also Foulsham & Underwood, 2008;

Henderson, Brockmole, Castelhano, & Mack, 2007). Our ‘‘cross-image

control’’ was obtained using the procedure described previously, with the

variation that the observer-defined region for one image was used to predict

the excluded observer’s fixations from a different image selected at random.

The Receiver Operating Characteristic (ROC) curves for inter-observer

agreement and the cross-image control are shown in Figure 2. These curves

show the proportion of fixations that fall within the fixation-defined map

(detection rate) in relation to the proportion of the image area selected by

the map (false alarm rate). In the following, we report the area under the

curve (AUC), which corresponds to the probability that the model will rank

an actual fixation location more highly than a nonfixated location, with a

value ranging from .5 (chance performance) to 1 (perfect performance)

(Harel et al., 2006; Renninger, Verghese, & Coughlan 2007; Tatler et al.,

2005).

The results in Figure 2 show a high degree of inter-observer agreement,

indicating high consistency in the regions fixated by different observers for

both target-absent scenes (AUC�.93) and target-present scenes (AUC�
.95). Overall, inter-observer agreement was higher in target-present than in

target-absent scenes, t(805)�11.6, pB.0001, most likely because fixating the

target was the primary goal of the search. These agreement curves represent

an upper bound for comparing performance of the computational models

with human fixations. Furthermore, the cross-image control produced an

AUC of .68 and .62 for target-absent and target-present scenes respectively

(random chance: AUC�.5). The cross-image control line represents the

proportion of human agreement due to oculomotor biases and other biases

in the stimuli set, and serves as the lower bound on the performance of the

models.
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MODELLING METHODS

Here we used the framework of visual search guidance from Torralba (2003b)

and Torralba et al. (2006). In this framework, the attentional map (M), which

will be used to predict the locations fixated by human observers, is computed

by combining three sources of information: Image saliency at each location

(MS), a model of guidance by target features (MT), and a model of guidance

by the scene context (MC).

M(x; y)�MS(x; y)
g1 MT(x; y)

g2 MC(x; y)
g3 (1)

The exponents (g1, g2, g3), which will act like weights if we take the logarithm

of Equation 1, are constants that are required when combining distributions

with high-dimensional inputs that were independently trained, to ensure that

the combined distribution is not dominated by one source (the procedure for

selecting the exponents is described later). Together, these three components
(MS, MT, and MC) make up the combined attentional map (M).

Figure 3 illustrates a scene with its corresponding saliency, target features,

and scene contextmaps, aswell as a combinedmap integrating the three sources

of guidance. Eachmodelmakes predictions, represented as a surfacemap, of the

regions that are likely to be fixated. The best model should capture as many

fixations as possible within as finely constrained a region as possible. In the

following sections, we evaluate the performance of each of the three models

individually, followed by a model combining sources of attentional guidance.

Guidance by saliency

Computational models of saliency are generally based on one principle:

They use a mixture of local image features (e.g., colour and orientation at

various spatial scales) to determine regions that are local outliers given the
statistical distribution of features across a larger region of the image. The

hypothesis underlying these models is that locations whose properties differ

from neighbouring regions or the image as a whole are the most informative.

Indeed, rare image features in an image are more likely to be diagnostic of

objects (Elazary & Itti, 2008; Torralba et al., 2006), whereas repetitive image

features or large homogenous regions are unlikely to be object-like (Bravo &

Farid, 2006; Rosenholtz, Li, & Nakano, 2007).

Computing saliency involves estimating the distribution of local features
in the image. Here we used the statistical saliency model described in

Torralba et al. (2006), including the use of an independent validation set to

determine an appropriate value for the exponent.3 The independent

3 In our validation set, the best exponent for the saliency map was .025, which is within the

optimal range of .01�.3 found by Torralba et al. (2006).
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validation set was composed of 50 target-present and 50 target-absent scenes

selected randomly from the 912 experimental images and excluded from all

other analyses. Figure 4 shows maps of the best and worst predictions of the

saliency model on our stimuli set.

Guidance by target features

To date, the most well-studied sources of search guidance are target features

(for reviews, see Wolfe, 2007; Zelinsky, 2008). Identifying the relevant

features of an object’s appearance remains a difficult issue, although recent

computer vision approaches have reached excellent performance for some

object classes (i.e., faces, Ullman, Vidal-Naquet, & Sali, 2002; cars,

Papageorgiou & Poggio, 2000; pedestrians, Dalal & Triggs, 2005; cars,

bicycles, and pedestrians, Serre, Wolf, Bileschi, Riesenhuber, & Poggio, 2007;

Torralba, Fergus, & Freeman, 2008). Here, we used the person detector

developed by Dalal and Triggs (2005) and Dalal, Triggs, and Schmid (2006)

to model target features, as their code is available online4 and gives state of

the art detection performance at a reasonable speed.

Implementation of the DT person detector. The Dalal andTriggs (DT)

detector is a classifier-based detector that uses a scanningwindowapproach to

explore the image at all locations and scales. The classifier extracts a set of

features from each window and applies a linear Support Vector Machine

(SVM) to classify the window as belonging to the target or background

classes. The features are a grid of Histograms of Oriented Gradients (HOG)

descriptors. The detector is sensitive to the gross structure of an upright

human figure but relatively tolerant to variation in the pose of the arms and

legs. We trained various implementations of the DT detector with different

training set sizes and scanning window sizes, but here we report the only the

results from implementation which ultimately gave the best performance on

our validation set.5 This implementation used a scanning window of 32�64

pixels and was trained on 2000 upright, unoccluded pedestrians, along with

their left�right reflections. Pedestrians were cropped from images in the

LabelMe database (Russell, Torralba, Murphy, & Freeman, 2008) and

reduced in size to fill three-quarters of the height of the detection window.

Negative training examples consisted of 30 randomly selected 32�64 pixel

patches from 2000 images of outdoor scenes which did not contain people.

None of the experimental stimuli were used as training images. The training

process was as described in Dalal and Triggs (2005).

4 See people detector code at http://pascal.inrialpes.fr/soft/olt/
5 See the authors’ website for details and results from the other implementations.
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The detector was tested on our stimuli set with cropped, resized

pedestrians from our target-present scenes serving as positive test examples

and 32�64 pixel windows from our target-absent scenes serving as negative

test examples. Figure 5 shows the detection performance of our selected DT

model implementation.6 This implementation gave over 90% correct

detections at a false positive rate of 10%, confirming the reliability of the

DT detector on our database. Although this performance might be

considered low given the exceptional performance of the DT detector on

other image sets, the scenes used for our search task were particularly

challenging: Targets were small, often occluded, and embedded in high

Figure 5. The ROC curve of the best implementation of the DT pedestrian detector, tested on our

stimuli set. To view this figure in colour, please see the online issue of the Journal.

6 See the authors’ website for the detection curves of the other model implementations.
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clutter. It is worth nothing that our goal was not to detect target-people in

the dataset, but to use a reliable object detector as a predictor of human

search fixations.

Target features map. To generate target features maps for each image,

the detector was run using a sliding window that moved across the image in

steps of eight pixels. Multiscale detection was achieved by iteratively

reducing the image by 20% and rerunning the sliding window detector;

this process was repeated until the image height was less than the height of

the detector window (see Dalal & Triggs, 2005, for details). This meant that

each pixel was involved in many detection windows, and therefore the

detector returned many values for each pixel. We created the object detector

map (MT) by assigning to each pixel the highest detection score returned for

that pixel (from any detection window at any scale). As with the saliency

map, the resulting object detector map was raised to an exponent (.025,

determined by iteratively varying the exponent to obtain the best perfor-

mance on the validation set) and then blurred by applying a Gaussian filter

with 50% cutoff frequency at 8 cycles/image. Figure 6 shows maps of the best

and worst predictions of the target features model on our stimuli set.

Guidance by scene context features

A mandatory role of scene context in object detection and search has been

acknowledged for decades (for reviews, Bar, 2004; Chun, 2003; Oliva &

Torralba, 2007). However, formal models of scene context guidance face the

same problem as models of object appearance: They require knowledge

about how humans represent visual scenes. Several models of scene

recognition have been proposed in recent years (Bosch, Zisserman, &

Muñoz, 2008; Fei Fei & Perona, 2005; Grossberg, & Huang, 2009; Lazebnik,

Schmidt, & Ponce, 2006; Oliva & Torralba, 2001; Renninger & Malik, 2004;

Vogel & Schiele, 2007), with most of the approaches summarizing an image’s

‘‘global’’ features by pooling responses from low-level filters at multiple

scales and orientations sampled over regions in the image.

Our model of scene context implements a top-down constraint that selects

‘‘relevant’’ image regions for a search task. Top-down constraints in a

people-search task, for example, would select regions corresponding to

sidewalks but not sky or trees. As in Oliva and Torralba (2001), we adopted a

representation of the image using a set of ‘‘global features’’ that provide a

holistic description of the spatial organization of spatial frequencies and

orientations in the image. The implementation was identical to the

description in Torralba et al. (2006), with the exception that the scene

context model incorporated a finer spatial analysis (i.e., an 8�8 grid of
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nonoverlapping windows) and was trained on more images (1880 images).

From each training image, we produced 10 random crops of 320�240 pixels

to generate a training set with a uniform distribution of target locations. As

in Torralba et al., the model learned the associations between the global

features of an image and the location of the target. The trained computa-

tional context model compared the global scene features of a novel image

with learned global scene features to predict the image region most highly

associated with the presence of a pedestrian. This region is represented by a

horizontal line at the height predicted by the model. Figure 7 shows maps of

the best and worst predictions of the scene context model on our stimuli set.

There are cases of the scene context model failing to predict human

fixations simply because it selected the wrong region (see Figures 7 and 8). In

these cases, it would be interesting to see whether performance could be

improved by a ‘‘context oracle’’, in which the true context region is known.

It is possible to approximate contextual ‘‘ground truth’’ for an image by

asking observers to indicate the best possible context region in each scene

(Droll & Eckstein, 2008). With this information, we can establish an upper

bound on the performance of a model based solely on scene context.

Evaluating the ground truth of scene context: A ‘‘context oracle’’. Seven

new participants marked the context region for pedestrians in each scene in

the database. The instructions were to imagine pedestrians in the most

plausible places in the scene and to position a horizontal bar at the height

where the heads would be. Participants were encouraged to use cues such as

the horizon, the heights of doorways, and the heights of cars and signs in

order to make the most accurate estimate of human head height. Image

presentation was randomized and self-paced. Each participant’s results

served as an individual ‘‘context model’’, which identified the contextually

relevant location for a pedestrian for each scene. The ‘‘context oracle’’ was

created by pooling responses from all observers. Context oracle maps

(Figure 8), were created by applying a Gaussian blur to the horizontal line

selected by each observer, and then summing the maps produced by all

participants.

Guidance by a combined model of attention

The three models were combined by multiplying the weighted maps as

shown in Equation 1. The weights (g1�0.1, g2�0.85, g3�0.05) were

selected by testing various weights in the range [0,1] to find the combination

which gave the best performance on the validation set. Examples of

combined source model maps are shown in Figure 9.
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MODELLING RESULTS

The ROC curves for all models are shown in Figure 10 and the performances

are given in Table 1. Averaging across target-absent and target-present

scenes, the scene context model predicted fixated regions with greater

accuracy (AUC�.845) than models of saliency (.795) or target features

(.811) alone. A combination of the three sources of guidance, however,

resulted in greater overall accuracy (.895) than any single source model, with

the overall highest performance given by a model that integrated saliency

and target features with the ‘‘context oracle’’ model of scene context (.899).

Relative to human agreement, the purely computational combined model

achieved 94% of the AUC for human agreement in both target-present and

target-absent scenes. When the context oracle was substituted for the scene

context model, the combined model achieved on average 96% of the AUC of

human agreement.

Saliency and target features models

The saliency model had the lowest overall performance, with an AUC of .77

and .82 in target-absent and target-present scenes. This performance is

within the range of values given by other saliency models predicting fixations

in free viewing tasks (AUC of .727 for Itti et al., 1998; .767 for Bruce &

Tsotsos, 2006; see also Harel et al., 2006).

The best example shown in Figure 4 is typical of the type of scene in

which the saliency model performs very well. The saliency model does best in

scenes with large homogenous regions (sky, road), and in which most of the

Figure 8. Comparison between (a) the computationally defined scene context map and (b) the

empirically defined context oracle map for a single image (maps are thresholded at 20% of the image

area; dots represent fixations). To view this figure in colour, please see the online issue of the Journal.
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salient features coincide with the region where observers might reasonably

expect to find the target. This illustrates the difficulty in determining how

saliency influences eye movement guidance: In many cases, the salient

regions of a real world scene are also the most contextually relevant regions.

In fact, recent studies suggest that the correlation between saliency and

observer’s fixation selection may be an artefact of correlations between

salience and higher level information (Einhauser et al., 2008; Foulsham &

Underwood, 2008; Henderson et al., 2007; Stirk & Underwood, 2007; Tatler,

TABLE 1
Summary of performance of human observers, single source models, and combined

source of guidance models

Area under curve

Performance at 20%

threshold

Performance at 10%

threshold

Target-absent scenes

Human agreement .930 .923 .775

Cross-image control .683 .404 .217

Saliency model .773 .558 .342

Target features model .778 .539 .313

Scene context model .845 .738 .448

Context oracle .881 .842 .547

Saliency�Target

features

.814 .633 .399

Context�Saliency .876 .801 .570

Context�Target

features

.861 .784 .493

Combined source

model

.877 .804 .574

Combined model,

using context oracle

.893 .852 .605

Target-present scenes

Human agreement .955 .952 .880

Cross-image control .622 .346 .186

Saliency model .818 .658 .454

Target features model .845 .697 .515

Scene context model .844 .727 .451

Context oracle .889 .867 .562

Saliency�Target

features

.872 .773 .586

Context�Saliency .894 .840 .621

Context�Target

features

.890 .824 .606

Combined source model .896 .845 .629

Combined model,

using context oracle

.906 .886 .646

A COMBINED SOURCE MODEL OF EYE GUIDANCE 965
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2007). The saliency model can also give very poor predictions of human

fixations in some scenes, as shown by the example in Figure 4. In a search

task, saliency alone is a rather unreliable source of guidance because saliency

is often created by an accidental feature (such as a reflection or a differently

coloured gap between two objects) that does not necessarily correspond to

an informative region.

In target-present scenes, not surprisingly, the target features model

(AUC�.85) performed significantly better than the saliency model,

t(404)�4.753, pB.001. In target-absent scenes, however, the target features

model (AUC�.78) did not perform significantly above the saliency model,

t(405)B1. Interestingly, both models were significantly correlated with each

other, r�.37, pB.001, suggesting that scenes for which the saliency model

was able to predict fixations well tended to be scenes in which the target

features model also predicted fixations well.

Figure 5 shows target-absent images for which the target features model

gave the best and worst predictions. Similar to the saliency model, the target

features model tended to perform best when most of the objects were

concentrated within the contextually relevant region for a pedestrian. Also

like the saliency model, the target features model performed poorly when it

selected accidental, nonobject features of the image (such as tree branches

that happened to overlap in a vaguely human-like shape). It is important to

note that the performance of the target features model is not due solely to

fixations on the target. In the target-absent scenes, there was no target to find,

yet the target features model was still able to predict human fixations

significantly above the level of the cross-image control. Even in target-present

scenes, replacing predictions of the target features model with the true

location of the target (a ‘‘target oracle’’) did not explain the target model’s

performance on this dataset.7

Context models

Overall, scene context was the most accurate single source of guidance in

this search task. The computational model of scene context predicted

fixation locations with an AUC of .85 and .84 in target-absent and target-

present scenes, respectively. The scene context model performed significantly

better than the target features model in target-absent scenes, t(405)�11.122,

pB.001, although the two models did not significantly differ in target-

present scenes, t(404)B1.

7 See the authors’ website for a comparison of the ROC curves of the target features model

and the target oracle.
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In the majority of our scenes, the computational scene context model gave

a very good approximation of the location of search fixations. The first and

second images in Figure 7 show the model’s best and median performance,

respectively, for target-absent scenes. In fact, the context model failed to

predict fixated regions (i.e., had an AUC below the mean AUC of the cross-

image control) in only 26 target-absent scenes and 24 target-present scenes.

Typical failures are shown in Figures 7 and 8: In a few scenes, the model

incorrectly identifies the relationship between scene layout and probable

target location. In order to get around this problem and get a sense of the

true predictive power of a context-only model of search guidance, we used

the ‘‘context oracle’’. The empirically determined context oracle should be

able to distinguish between cases in which the context model fails because it

fails to identify the appropriate context region, and cases in which it fails

because human fixations were largely outside the context region.
Overall performance of the context oracle was .88 and .89 for target-

absent and target-present images, respectively. The context oracle performed

significantly better than the computational model of scene context in target-

absent, t(405)�8.265, pB.001, and target-present, t(404)�8.861, pB.001,

scenes. Unlike any of the computational models, the context oracle

performed above chance on all images of the dataset; at worst, it performed

at about the level of the average AUC for the cross-image control (.68 for

target-absent scenes). Examples of these failures are shown in Figure 11.

Combined source models

A combined source model that integrated saliency, target features, and scene

context outperformed all of the single source models, with an overall AUC

of .88 in target-absent scenes and .90 in target-present scenes (see Table 1).

The combined guidance model performed better than the best single source

model (scene context) in both target-absent, t(405)�10.450, pB.001, and

target-present, t(404)�13.501, pB.001, scenes.

Across the image set, performance of the combined model was strongly

correlated with that of the scene context model, r�.80, pB.001 in target-

absent scenes. The combined model was also moderately correlated with the

saliency model, r�.51, pB.001 in target-absent scenes, and the target

features model correlated weakly, r�.25, pB.001 in target-absent scenes.

Taken together, this suggests that the success or failure of the combined

model depended largely on the success or failure of its scene context

component, and less on the other two components.

In order to analyse the combined model in greater detail, we also tested

partial models that were missing one of the three sources of guidance (see

Table 1). Removing the saliency component of the combined model
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produced a small but significant drop in performance in target-absent,

t(405)�6.922, pB.001, and target-present, t(404)�2.668, pB.01, scenes.

Likewise, removing the target features component of the model also

produced a small but significant drop in performance in target-absent,

t(405)�5.440, pB.001, and target-present, t(404)�10.980, pB.001, scenes.

The high significance value of these extremely small drops in performance is

somewhat deceptive; the reasons for this are addressed in the Discussion.

Notably, the largest drop in performance resulted when the scene context

component was removed from the combined model: target-absent, t(405)�
17.381, pB.001; target-present, t(404)�6.759, pB.001.

Interestingly, the combined source model performed very similarly to the

empirically defined context oracle. The difference between these two models

was not significant in target-absent, t(405)��1.233, p�.218, or target-

present, t(404)�2.346, p�.019, scenes.

Finally, the high performance of the context oracle motivated us to

substitute it for the scene context component of the combined model, to see

whether performance could be boosted even further. Indeed, substituting the

context oracle for computational scene context improved performance in

both target-absent, t(405)�5.565, pB.001, and target-present, t(404)�
3.461, p�.001, scenes. The resulting hybrid model was almost entirely

driven by the context oracle, as suggested by its very high correlation with

the context oracle, r�.97, pB.001 in target-absent scenes.

DISCUSSION

We assembled a large dataset of 912 real world scenes and recorded eye

movements from observers performing avisual search task. The scene regions

fixated were very consistent across different observers, regardless of whether

the target was present or absent in the scene. Motivated by the regularity of

search behaviour, we implemented computational models for several

proposed methods of search guidance and evaluated how well these models

predicted observers’ fixation locations. On the target-absent scenes of the

dataset, the scene context model generated better predictions (it was the best

single map in 276 out of the 406 scenes) than saliency (71 scenes) or target

features (59 scenes) models. Even in target-present scenes, scene context

provided better predictions (191 of 405 scenes) than saliency (72 scenes) but

only slightly more than target features (142 scenes). Ultimately, combining

models of attentional guidance predicted 94% of human agreement, with the

scene context component providing the most explanatory power.

Although the combined model is reasonably accurate at predicting

human fixations, there is still room for improvement. Moving forward,

even small improvements in model specificity will represent a significant
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achievement. Our data shows that human observers are reasonable

predictors of fixations even as map selectivity increases: 94% and 83%

accuracy for selected region sizes of 20% and 10%, respectively. In contrast,

the accuracy of all models fell off drastically as map selectivity increased and
a region size of roughly 40% is needed for the combined model to achieve the

same detection rate as human observers. Figure 12 illustrates this gap

between the best computational model and human performance: Observers’

fixations are tightly clustered in very specific regions, but the model selects a

much more general region containing many nonfixated objects. In the

following, we offer several approaches that may contribute to an improved

representation of search guidance in real world scenes.

In our work, a ‘‘context region’’ is operationally defined as an association
between certain scene regions and the presence of a target. Under this

definition, a context region can be specified for any class of target and

modelled using many representations. In this study, our model of scene

context generated predictions based on a learned association between a

representation of global image statistics and the location of a person in the

scene. Compared to a model of image saliency or a model of target-like

features, we found that a scene context model was better able to predict the

region where people would look, regardless of whether the target was present
in the scene. Moreover, the high overall accuracy of a computational

combined source model was matched by an empirically derived context

oracle, created by an independent set of participants marking the region

which they deemed most likely to contain the target. In target-absent scenes,

there was a substantial correlation between the context oracle and human

agreement, r�.54, pB.001, and also between the context oracle and the

combined model, r�.50, pB.001. This suggests that examining failures of

the context oracle may hint at ways in which the combined model’s
representation fails to match human search patterns.

Figure 11 shows the worst performance of the context oracle for target-

absent scenes. Why was contextual guidance insufficient for predicting the

fixated regions of these scenes? One reason may be that our model of the

context region did not adequately represent the real context region in certain

complex scenes. We modelled the context region as a single height in the

image plane, which is appropriate for most images (typically pedestrians

appear on the ground plane and nowhere else). However, when the scenes
contain multiple surfaces (such as balconies, ramps, and stairs) at different

heights, the simplified model tends to fail. Improving the implementation of

scene context to reflect that observers have expectations associated with

multiple scene regions may reduce the discrepancy between model predic-

tions and where observers look.

In addition, observers may be guided by contextual information beyond

what is represented here. It is important to note that scene context can be
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represented with a number of approaches. Associations between the target

and other objects in the scene, for example, may also contribute to search

guidance (Kumar & Hebert, 2005; Rabinovich, Vedaldi, Galleguillos,

Wiewiora, & Belongie, 2007; Torralba, Murphy, & Freeman, 2005, 2007).

In our search task, for example, the presence of a person may be more

strongly associated with a doorway than a garbage can. The role of semantic

influences in search guidance remains an interesting and open question.

Zelinsky and Schmidt (this issue 2009) explore an intermediate between

search of semantically meaningful scenes and search in which observers lack

expectations of target location. They find evidence that scene segmentation

and flexible semantic cues can be used very rapidly to bias search to regions

associated with the target (see also Eckstein et al., 2006; Neider & Zelinsky,

2006).

Figure 12. Illustration of the discrepancy between regions selected by (a) the combined computa-

tional model and (b) human fixations. To view this figure in colour, please see the online issue of the

Journal.
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Scene context seems to provide the most accurate predictions in this task,

which provokes the question: Is scene context typically the dominant source

of guidance in real world search tasks? Similarly, how well do the findings of

this study generalize to search for other object classes? Our search task may
be biased towards context-guided search in the following ways. First,

observers may have been biased to adopt a context-based strategy rather

than relying on target features simply because the target pedestrians were

generally very small (less than 1% of image area) and often occluded, so a

search strategy based mainly on target features might have produced more

false alarms than detections. Second, the large database tested here

represented both semantically-consistent associations (pedestrians were

supported by surfaces; Biederman et al., 1982) and location-consistent
associations (pedestrians were located on ground surfaces). As a result, even

when the target was absent from the scene, viewers expected to find their

target within the context region, and therefore the scene context model

predicted fixations more effectively than the target features or saliency

models. Searching scenes in which the target location violated these prior

expectations (e.g., person on a cloud or rooftop) might bias the pattern of

fixations such that the emphasis on each source of guidance would be

different from the current model.
A fully generalizable model of search behaviour may need to incorporate

flexible weights on the individual sources of search guidance. Consider the

example of searching for a pen in an office. Looking for a pen from the

doorway may induce strategies based on convenient object relations, such as

looking first to a desk, which is both strongly associated with the target and

easy to discriminate from background objects. On the other hand, looking

for a pen while standing in front of the desk may encourage the use of other

strategies, such as searching for pen-like features. It follows that the features
of the target may vary in informativeness as an observer navigates through

their environment. A counting task, for example, may enhance the

importance of a target features model (see Kanan, Tong, Zhang, & Cottrell,

this issue 2009). The implications for the combined source model of

guidance are that, not only would the model benefit from an improved

representation of target features (e.g., Zelinsky, 2008), saliency (see Kanan et

al., this issue 2009), or context, but the weights themselves may need to be

flexible, depending on constraints not currently modelled.
In short, there is much room for further exploration: We need to

investigate a variety of natural scene search tasks in order to fully understand

the sources of guidance that drive attention and how they interact. It is

important to acknowledge that we have chosen to implement only one of

several possible representations of image saliency, target features, or scene

context. Therefore, performance of the individual guidance models discussed

in this paper may vary with different computational approaches. Our aim,
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nevertheless, is to set a performance benchmark for how accurately a model

representing combined sources of guidance can predict where human

observers will fixate during natural search tasks.

CONCLUDING REMARKS

We present a model of search guidance that combines saliency, target
features, and scene context, and accounts for 94% of the agreement between

human observers searching for targets in over 900 scenes. In this people-

search task, the scene context model proves to be the single most important

component driving the high performance of the combined source model.

None of the models, however, fully capture the selectivity of the observer-

defined attentional map. A comprehensive understanding of search beha-

viour may require that future models capture mechanisms that underlie the

tight clustering of search fixations.
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